
0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

1

CARMA: Channel-aware Reinforcement

Learning-based Multi-path Adaptive Routing for

Underwater Wireless Sensor Networks
Valerio Di Valerio, Francesco Lo Presti, Chiara Petrioli, Luigi Picari, Daniele Spaccini, and Stefano Basagni

Abstract—Routing solutions for multi-hop underwater wireless
sensor networks suffer significant performance degradation as
they fail to adapt to the overwhelming dynamics of underwater
environments. To respond to this challenge, we propose a new
data forwarding scheme where relay selection swiftly adapts to
the varying conditions of the underwater channel. Our protocol,
termed CARMA for Channel-aware Reinforcement learning-
based Multi-path Adaptive routing, adaptively switches between
single-path and multi-path routing guided by a distributed
reinforcement learning framework that jointly optimizes route-
long energy consumption and packet delivery ratio. We compare
the performance of CARMA with that of three other routing
solutions, namely, CARP, QELAR and EFlood, through SUNSET-
based simulations and experiments at sea. Our results show that
CARMA obtains a packet delivery ratio that is up to 40%
higher than that of all other protocols. CARMA also delivers
packets significantly faster than CARP, QELAR and EFlood,
while keeping network energy consumption at bay.

Index Terms—Underwater Wireless Sensor Networks, multi-
path routing, reinforcement learning, in-field experiments.

I. INTRODUCTION

UNDERWATER Wireless Sensor Networks (UWSNs)

have garnered remarkable attention as a viable alternative

to cable-based underwater deployments. While the latter are

notoriously very expensive, and therefore used mostly by

the primary telecommunication industry, UWSNs leverage the

more and more reasonable pricing and increasing reliability

of underwater wireless communication technologies, ranging

from acoustic to optical. Many applications, including marine

monitoring, port surveillance and security, underwater biology

and discovery and protection of marine archaeology, among

others [1], are all possible because of the new design of high

performance devices and protocols for UWSNs capable of

covering large regions of the underwater world [2], [3].

Designing reliable and efficient solutions for underwater

multi-hop wireless networking is quite the new challenge, in

that solutions for terrestrial networks cannot be adapted to

work underwater. The main culprit is the very nature of the

prevailing underwater channel, namely, the acoustic channel,

which is beset by long propagation delays, low bandwidth,

Valerio Di Valerio, Chiara Petrioli, Luigi Picari and Daniele Spaccini are
with the Department of Computer Science, University of Rome “La Sapienza,”
Rome, Italy. E-mail: {divalerio, petrioli, picari, spaccini}@di.uniroma1.it

Francesco Lo Presti is with the Department of Civil Engineering and
Computer Science, University of Rome “Tor Vergata,” Rome, Italy. E-mail:
lopresti@info.uniroma2.it

Stefano Basagni is with the Institute for the Wireless Internet of Things at
Northeastern University, Boston, MA, U.S.A. E-mail: basagni@ece.neu.edu

overwhelmingly fast dynamics, slow signal attenuation, and

asymmetric links, among other impairments. In actual UWSN

deployments, for instance, it is common to observe that,

independently of the device transmission power and of their

vicinity, two nodes might not be able to communicate at

all, or that the channel is clearly asymmetrical. What makes

matters even more complicated, is that these conditions change

quickly. As such, designing protocols for underwater requires

techniques very different from those successfully used for

terrestrial networking. The networking protocols for UWSNs

proposed so far attempt at addressing these unique features of

underwater communications [3]. However, they fall short of

successfully tackling the ever changing conditions of the net-

work, including the varying traffic and, even more compelling,

link quality and general environmental settings [4], [5].

In this paper, we propose a new design for routing aimed

at tackling the different forms of variability of the underwater

world directly. Our protocol is termed CARMA for Channel-

aware Reinforcement learning-based Multi-path Adaptive rout-

ing. CARMA is guided by a reinforcement learning framework

carefully defined to include network and environmental dy-

namics in the selection of the relays designated to forward

a packet. By dynamically adapting the size of the set of

relays to current channel conditions, CARMA automatically

switches between fast and energy efficient single-path routing

(in favorable network conditions) and more robust multi-path

routing (unfavorable forwarding). The framework cost function

is designed for optimizing route-long energy consumption

without sacrificing packet delivery ratio, thus providing long

network lifetime together with reliability and robustness.

The multifold contributions of this paper include the fol-

lowing.

• We define CARMA as a multi-path routing scheme

that adaptively determines the set of next hop relays

depending on channel conditions and route-long costs.

Size and composition of the relay set change not only on a

per packet basis, but also at each transmission attempt. In

other words, if a packet needs to be retransmitted multiple

times—an indication of unfavorable channel conditions—

the size of the relay set is increased to favor packet

delivery and its composition is geared to minimize energy

consumption, every time the packet is retransmitted. As

we will demonstrate later in the paper, the very idea of

dynamically determining both size and composition of

the relay set affords CARMA remarkable packet delivery

ratio at a reasonable energy cost.

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

2

• Choosing size and composition of the relay set is for-

mulated as a decentralized reinforcement learning prob-

lem. Its solution enables nodes to make optimal routing

decisions at runtime locally. The learning problem at

each node is based on a computationally efficient model

that considers the number of retransmissions of each

packet and link transmission probabilities determined

by efficiently monitoring link quality. The cost function

of our learning framework explicitly considers energy

consumption (for minimizing route-long energy cost) and

includes a penalty for dropping packets (for increasing

packet delivery ratio). CARMA is amenable to efficient

implementation as it requires limited exchange of infor-

mation to keep estimates of model parameters. Particu-

larly, information needed by the learning machinery is

piggybacked to the data (in the packet header) and it is

distributed among neighboring nodes via overhearing.

• We evaluate the performance of CARMA through simu-

lations in realistic scenarios, and compare its performance

to state-of-the-art routing for UWSNs. We select routing

solutions that are exemplary of different approaches to

underwater routing: CARP represents single-path, cross

layer protocols that are channel aware [6]. QELAR is an

example of single-path solutions for underwater routing

based on machine learning [7], and EFlood, an enhance-

ment of plain flooding specific for UWSNs, represents

multi-path routing [6]. CARMA, CARP, QELAR and

EFlood have been implemented in SUNSET SDCS, a

software suite specifically designed for underwater proto-

col design and testing [8]. Results in networks of different

size and varying traffic show that CARMA outperforms

all other protocols in all considered metrics. Particularly,

it obtains a packet delivery ratio that is up to 40%

higher than that of all the other protocols, delivers packets

significantly faster than CARP, QELAR and EFlood, and

keeps the network energy consumption reasonably low.

• The performance of CARMA, CARP and EFlood has

been also compared through experiments at sea. Results

show that CARMA achieves better packet delivery ra-

tio, energy consumption, end-to-end latency and data

throughput than CARP and EFlood. It is also robust in

that it obtains consistently good performance in spite

of time varying channel conditions. To the best of our

knowledge, our campaign of experiments is the first to

provide a comparative performance evaluation of pro-

tocols with different design characteristics. Results do

not only offer quantitative evidence of the superiority of

CARMA over other approaches, but also testify to the

practicality of our reinforcement learning framework.

The reminder of the paper is organized as follows. Section II

summarizes state-of-art on routing for underwater wireless

sensor networks. In Section III we present CARMA detailing

the network scenario, packet handling operations and the re-

inforcement learning-based routing model that drives protocol

operations. Section IV illustrates experimental results. Finally,

Section V concludes the paper.

II. RELATED WORKS

We report on previous works related to concepts and

techniques used in this paper, namely, routing protocols for

UWSNs and underwater solutions for data delivery that make

machine learning-based choices.1

Routing protocols for UWSNs have been proposed for over

a decade now. Recent solutions include [6], [12], [13], [14].

For details on these protocols, and several more, the reader

is referred to surveys on the subject, such as those by Li et

al. [15] and more recently by Khan et al. [16]. Among the

many solutions, one that stands out in terms of overall re-

markable performance is the Channel-aware Routing Protocol

(CARP), exploiting link quality information for successful data

delivery to the sink [6]. Nodes are selected as relays based on

their link quality, hop count and residual energy. CARP utilizes

a channel reservation mechanism à la RTS/CTS for channel

access and for selecting packet relays (cross layer design). For

this reason, while being reliable and limiting packet collisions,

it incurs noticeable latency. Also, in networks with high traffic,

nodes often fail to obtain rights to access the channel, which

results in low packet delivery ratio. As described in this

paper, CARMA uses a different approach to routing, smartly

choosing multiple relays to jointly optimize route-long energy

consumption and packet delivery. Our protocol equals the

performance of CARP on collisions through its reinforcement

learning framework for dynamic relay set selection, while at

the same time achieving noticeably better PDR, latency and

energy consumption (Section IV-C and Section IV-D).

Reinforcement learning has been extensively used for rout-

ing in multi-hop wireless networks, including wireless ad

hoc networks, wireless sensor networks and cognitive radio

networks and more recently for routing in UWSNs [17],

[18], [19], [20], [7], [21]. The advantage of learning-based

routing stems from its determining optimal routing policies

online, thus achieving and keeping route (semi) optimality in

a dynamic environment [22]. Furthermore, learning algorithms

are often amenable to distributed implementation and their

communication requirements can be made relatively small

(e.g., through overhearing). These are all critical as well

as desirable features for the highly variable and resource

constrained UWSNs environment. Solutions for underwater

networks such as those presented in [18], [19], [17], [20]

concern specific scenarios that are not similar to the sce-

nario considered here. Particularly, the protocol MARLIN-Q

presented in [18] proposes a solution for quality-of-service-

based data delivery in multi-modal networks, namely, in

networks whose nodes use multiple communication devices,

such as multiple acoustic modems and optical transceivers.

The HYDRO protocol concerns single-route data forwarding

1 We acknowledge that machine learning in its many incarnations has
been applied to terrestrial wireless networking in general, and to routing
problems in particular, for a long time now—surveys abound [9], [10],
[11]. However, based on our research experience on both terrestrial and
underwater networks, we have learned that the design of solutions for these
two very different environments is necessarily different. So much, in fact, that
comparison between underwater and terrestrial solutions would be scarcely
informative and devoid of insights. For this reason, in this paper we focus our
literature review on machine learning-based solutions that explicitly address
the challenges of underwater wireless networking.

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

3

in networks whose nodes are powered by different forms of en-

ergy harvesting [19]. As such, the main concern of that routing

strategy is to find routes of nodes with the smallest probability

of running out of energy. Solutions presented in [17], [20] are

also for networks with intermittent connectivity. A learning-

informed routing protocol designed for scenarios similar to

those considered in this paper is QELAR, by Hu and Fei [7].

Based on a model-based Q-learning approach, QELAR aims at

maximizing the residual energy of the network nodes. Relays

are chosen depending on the energy they can save by locally

running a learning framework whose cost function accounts

for the residual energy of each node as well as for the energy

distribution among neighboring nodes. QELAR is thus a

solution that compares well with previous protocols, especially

in terms of network lifetime. However, its Q-learning model

leads to routing decisions that are prone to packet loss and

to unfairness, especially to nodes far away from the sink. As

observed in Section IV-C, this leads to degraded performance,

especially in larger networks.

CARMA reaps the joint benefit of adaptive multi-relay

routing and machine learning-based optimal routing policy for

overcoming the limitation of both CARP and QELAR. The

performance evaluation provided in this paper clearly demon-

strates the effectiveness of CARMA in obtaining reliable and

energy efficient data delivery in a set of scenarios considerably

wider than that of CARP and QELAR.

III. CARMA

A. Network scenario

We consider a static underwater wireless sensor network

(UWSN) made up of N nodes whose sensors produce data to

be delivered to the network data collection point (the sink), for

processing and/or further forwarding. Nodes are generically

indicated by i and j. For each node i, with Ni we indicate the

set of its ni = |Ni| neighbors, i.e., the nodes that can receive

node i transmissions. We notice that, given the notorious

asymmetry of the underwater acoustic channel, the fact that

node j ∈ Ni does not imply that node i ∈ Nj . Because

of the extent of node deployment and the time-dependent

dynamics of the underwater channel, not all nodes can directly

communicate with the network sink, i.e., data packets may

travel multi-hop routes. A sketch of a UWSN scenario is

depicted in Figure 1.

Every node is equipped with a half-duplex omnidirectional

acoustic modem for data transmission. The sink is shown close

to surface, in the upper right corner of the picture, and has

capabilities to transmit data to stations on shore.

B. Packet handling

Routing according to CARMA happens through a flexible,

smart multi-path scheme. When a node has a packet to

transmit, it chooses the most suitable set of relay nodes among

its neighbors and it transmits the packet to all of them. Size and

composition of the relay set can change at each transmission

attempt, in pursuit of the specific objective of optimizing

energy efficiency and packet delivery ratio. The range of

choices varies from forwarding the packet to a single relay,

Figure 1: A UWSN scenario.

minimizing energy consumption and network traffic at the cost

of decreased end-to-end delivery, to broadcasting the packet

to all the sender’s neighbors, thus maximizing transmission

reliability at the cost of increased energy consumption and

traffic. In between, by carefully adjusting the number of

relays based on current conditions and on the number of

retransmissions left before discarding the packet, CARMA

attempts to combine the best of two worlds.

The presence of at least a packet p in the transmission

queue of a node i triggers the packet transmission operations

described in Algorithm 1.2

Algorithm 1 Packet Forwarding

1: p = dequeue packet

2: Add header information to p
3: if there are known neighbors then

4: k = 0
5: while k < K do

6: A = COMPUTERELAYS(k)

7: Forward packet p to set A
8: if transmission of p is overheard by time τ then

9: break

10: else

11: k = k + 1

12: Discard packet

13: else

14: Broadcast p

Packet p is dequeued (line 1) and required information is

added to its header (line 2). If node i has known neighbors

it executes the following steps: Sets the total number k of

transmission attempts (capped at K ≥ 1) to 0 (line 4);

computes the set A of neighbors to which packet p will

be transmitted (function COMPUTERELAYS(k); line 6), and

transmits packet p to all (and only) the neighbors listed

in set A (line 7). After the packet has been transmitted,

node i awaits τ time units to overhear the retransmission of

2 Multiple packets are handled one at a time, “First-In First-Out.”

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

4

packet p by one of the selected neighbors (implicit acknowl-

edgment;3line 8). (The value of τ is a function of the maximum

round trip time.) If so happens, packet transmission operations

are considered finished with success. Otherwise, the number

of retransmissions is increased by 1 (line 11) and, if k < K
the whole set of operation is performed again. We remark

that for each retransmission attempt, the node recomputes the

set of relays, possibly choosing different sets of relays as the

number k of transmission attempts increases. When k = K
the packet is discarded (line 12). (The value K is dynamically

set as detailed in Section III-E.)

If node i has no information about any of its neighbors, it

just broadcasts packet p (line 14). This failsafe behavior is a

key feature of CARMA: It allows nodes to discover each other;

it enables packet forwarding when no neighboring relays are

known, and it is functional to propagate channel, node and

route related information for learning purposes.

When not busy with transmitting packets, a node is in

“listening mode,” awaiting to hear the transmission of packets

from neighboring nodes. Overhearing packet transmission

triggers the execution of the following Algorithm 2.

Algorithm 2 Packet Overhearing & Reception

1: Extract header information and store it

2: if packet destination list includes node i then

3: Receive entire packet and enqueue it

4: else

5: Abort packet reception

Particularly, when node i overhears a packet p transmitted

by a neighboring node j, it extracts information from the

packet header and stores it (line 1). This information will be

used to learn how to route packets, as detailed later in this

section. If node i is one of the intended relays of packet p,

the packet is entirely received and stored in a local buffer

for further forwarding (line 3). Otherwise, the reception of

packet p is aborted (line 5).

C. A reinforcement learning framework for CARMA

The heart of CARMA packet forwarding resides in the

function COMPUTERELAYS, executed by node i to select the

set A of neighbors to which packet p is transmitted (line 6).

The algorithm is driven by a reinforcement learning framework

allowing node i to learn from its current environment, namely,

local channel quality and route-long energy consumption and

reliability. In this section we provide details on the learning

framework, namely, the state space, the actions, the state

transition dynamics and the cost function. We then define

function COMPUTERELAYS of Algorithm 1 that keeps the

learning machinery updated and computes the set of relays A

3 To reduce both network traffic and energy consumption each packet
is acknowledged implicitly: After a packet is sent, its sender listens to the
channel awaiting to overhear the retransmission of the packet by at least one
of the nodes that have received it. If such a retransmission is heard within τ
time units, the sender considers that packet transmission to be successful. If
not, the sender retransmits the packet after a pre-set amount of time. Only
the sink sends explicit acknowledgments to its senders, as it does not forward
the packet further underwater.

that optimizes routing in terms of energy consumption and

packet delivery ratio. (For generalities on reinforcement learn-

ing the reader is referred to the extensive literature on this

subject [23].)

States: Each node handling a packet p is in a state repre-

senting the number of times that p has been unsuccessfully

transmitted. Node i is in state s = k if it has transmitted

packet p already k times. Node i transits to state rcv if, after

a transmission attempt, packet p is correctly received by at

least one of its neighbors. If the transmission fails, the state

of node i becomes k+1. In case all the transmission attempts

have failed the packet is dropped, which is modeled by the

transition to state drop. The state space S is thus:

S = {0, . . . ,K − 1} ∪ {drop, rcv}, (1)

where s = 0 is the initial state, corresponding to node i first

transmission attempt of packet p.

Actions: Node i makes forwarding decisions depending

on the set of possible actions it can take from a state s.

Each time packet p is (re)transmitted, node i determines the

forwarding set for that transmission attempt. Therefore, for

each node i and state s = 0, . . . ,K − 1, the set of possible

actions Ai(s) is the set of non-empty subsets of Ni, namely,

Ai(s) ∈ P(Ni) \ ∅, with P(Ni) being the power set of the

set Ni of all node i neighbors. Since no action can take place

when s ∈ {drop, rcv}, we have A(sdrop) = A(srcv) = {∅}.4

Transitions: Packet transitions from a state s to the next

one depend on the forwarding decision a ∈ Ai(s) and on

the neighboring nodes that correctly receive the packet after a

transmission attempt. Let us consider the probabilities Pi,j and

Pj,i of correct reception on the links from node i to node j
and viceversa (defined below), with node j ∈ Ni. For each

state s = 0, . . . ,K − 1 we consider two cases depending on

whether the packet has been successfully transmitted or not.

In the first case, node i transits from state s to state rcv.

The transition probability to state rcv is then:

P a
i,s→rcv = 1−

∏

j∈a

(1− Pi,jPj,i), a ∈ Ai(s). (2)

Equation (2) indicates the joint probability that at least one

neighbor of node i receives the packet, and that node i
overhears its retransmission. It is critical to consider both

probabilities Pi,j and Pj,i since the transmission of a packet

is considered successful only when the packet is implicitly

acknowledged, i.e., when its sender overhears at least one relay

forwarding it. As underwater links can be highly asymmetric,

the two probabilities can significantly differ, and therefore

should be both taken into account.

In case the packet is not successfully transmitted we have

to further consider two cases. If s < K − 1, we just need to

increase the number of retransmissions, and the next state of

node i is s′ = k + 1. Otherwise, if the maximum number of

retransmissions has been reached (s = K − 1), the packet is

dropped and the next state of node i is s′ = drop. In both

cases the transition probability is:

4 As a state is an abstraction to model single packet forwarding, if a node
has no packet to transmit, it has no state.

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

5

P a
i,s→s′ = 1− P a

i,s→rcv =
∏

j∈a

(1− Pi,jPj,i), a ∈ Ai(s). (3)

Costs: CARMA routes packets with the goal of minimizing

the energy consumption on the whole route towards the sink,

and of maximizing packet delivery to the sink. In order

to model route-long energy consumption each state-action

pair (s, a) is associated with a cost function ci reflective of

the energy spent by sender node i to transmit packet p and of

the energy spent for transmission on routes from the selected

relays to the sink. For maximizing packet delivery the cost

function should also include a penalty for dropping the packet.

Formally:

ci(s, a) =

{

ei(s, a) + ni(s, a) s < K − 1

ei(s, a) + ni(s, a) + li(s, a) s = K − 1,
(4)

where ei(s, a) is the energy spent for transmitting the packet,

ni(s, a) is the cost incurred by downstream nodes to forward

a copy of the packet, and li(s, a) is the penalty associated to

dropping the packet (which can only occur in state s = K−1).

Energy cost ei(s, a) does not depend on the number of cho-

sen relays. For the sake of simplicity we assume that all nodes

use the same transmission power and that therefore the cost

for transmitting a packet is constant, namely, ei(s, a) = E.

The network component ni(s, a) of the cost is provided by:

ni(s, a) =
∑

j∈a

VjPi,j , (5)

where Vj is the cost to forward a packet from node j to the

sink along a whole route. This cost includes node j multiple

retransmissions of the packet and the aggregate energy ex-

penditure of all nodes from node j to the sink. Cost Vj is

multiplied by probability Pi,j since node j will forward the

packet only in case it successfully receives it from node i.5

Finally, in case a packet has been unsuccessfully retransmit-

ted for K−1 times, we associate the action a = A of the last

set of retransmissions with the energy penalty li(s, a) > 0.

This penalty aims at discouraging node i to drop the packet,

i.e., transitions to the drop state. As such, li(s, a) is defined

as:

li(s, a) = L
∏

j∈a

(1− Pi,j), (6)

where (1 − Pi,j) is the probability of unsuccessful delivery

of the packet to node j ∈ a = A,
∏

j∈a(1 − Pi,j) is the

overall probability of dropping the packet, and L is set to an

arbitrarily large value.

We finally have all the “ingredients” to describe how a

node i that has a packet p to transmit learns how to optimally

select relays to route it to the sink. Each node starts with no

knowledge of its surrounding environment. Interacting with

5 For the machine learning literati, we note that Vj is node j value function
in the initial state s = 0, that is, Vj = Vj(0) = mina∈Aj(0)

Qj(0, a), as

described later in the section. This value represents the current minimum cost
incurred by node j to forward a data packet to the sink. As described below
this information is included in the header of the packets transmitted by node j
(Figure 2).

its neighbors, it learns and updates this knowledge over time.

According to the reinforcement learning methodology [23],

a value function Vi is approximated and updated relying on

current estimations of the transition probabilities P a
i,s→s′ , and

on the estimated value of the functions Vj from neighboring

nodes j, needed to estimate the cost ci(s, a) (Equations (4)

and (5)). Algorithm 3 describes the learning process of node i
and the corresponding determination of the best relays for

packet p.

Algorithm 3 Learning Algorithm

1: function COMPUTERELAYS(current state k)

2: for all s ∈ S do

3: for all a ∈ Ai(s) do

4: Qi(s, a) = ci(s, a) + γ
∑

s′∈S
P a
i,s→s′Vi(s

′)

5: Vi(s) = mina∈Ai(s) Qi(s, a)

6: Vi = Vi(0)
7: a = argmina∈Ai(k) Qi(k, a)
8: return a

Every time a node has to (re)transmit a packet, it computes

the Q value function Qi [23] for each possible state and

action pair (line 4). (The discount factor γ, 0 ≤ γ ≤ 1 is

used to provide a way of deciding the importance of future

retransmission costs.) The estimate of the value function Vi

is then updated to represent the most current cost to route

from node i to the sink (line 6). The action to be returned,

namely, the set of the neighbors of node i selected as relays on

optimal routes to the sink, is chosen as the set that minimizes

the current value of the function Q (line 7), and returned to

the node (line 8 and line 6 of Algorithm 1). We observe that

Algorithm 3 is the model-based reinforcement learning Full

Backup Algorithm (Section 9.5 of [23]), corresponding to one

iteration of the Value Iteration Algorithm. Sutton and Barto

show that this algorithm enjoys faster convergence than the

Q-learning because at each iteration the latter only updates the

entry Q(s, a) associated to the current state s and action a,

while the former updates the entire Q-table at once [23].

D. A dynamic programming perspective

We provide a more in-depth understanding of the CARMA

learning machinery by rewriting the expression for Vi(s)
(line 5 of Algorithm 3) by replacing cost function and

transitions probabilities (Equations (2) through (6)) in the

computation of Q (line 4):

Vi(k) = mina∈A(k){ei(k, a) +
∑

j∈a Vj(0)Pi,j+

γVi(k + 1)
∏

j∈a(1− Pi,jPj,i)}, k < K − 1

Vi(k) = mina∈A(k){ei(k, a) +
∑

j∈a Vj(0)Pi,j+

L
∏

j∈a(1− Pi,j)}, k = K − 1.
(7)

Written in this format, and setting γ = 1, it is easier

to see Vi(k) as the overall cost to send a packet (already

transmitted k times) to the sink. In fact, this formulation

explicitly comprises: 1) the cost ei(k, a) of the k-th retrans-

mission from node i; 2) the cost
∑

j∈a Vj(0)Pi,j incurred

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

6

by the relay nodes j ∈ a for successfully delivering the

packet all the way to the sink, and 3) the cost Vi(k + 1) of

node i possible additional retransmissions, which occur with

probability
∏

j∈a(1 − Pi,jPj,i), namely, the probability that

node i does not overhear any relay forwarding the packet. In

the last retransmission attempt (k = K − 1), the last term is

replaced by the penalty L for dropping the packet in case of

transmission failure.

Equations 7 show that the reinforcement learning ap-

proach of CARMA can be regarded as the solution of a

distributed multipath routing problem with retransmission-

dependent routing decisions that uses the current estimates

of the link transmission probabilities. Correspondingly, Equa-

tions 7 take the typical form of a dynamic programming

problem.

E. Parameter computation and packet format

The execution of the algorithms described in this section

relies on the knowledge of the following.

The transition probabilities P a
i,s→s′ . The estimation of the

transition probabilities is based on the estimation of the link

probabilities Pi,j , a measure of link quality in that they keep

an estimate of the probability of successful packet reception

at node j. Each node j keeps count of the number pi,j of

packets received from each neighbor i, regardless of whether

it is an intended receiver of the packets from those neighbors.

The total number pi of packets sent by node i is deduced

by information in the header of the packets sent by that

node. This allows node j to estimate the incoming link

probability simply as Pi,j =
pi,j

pi
. These estimates are then

inserted into the header of packets transmitted by node j to be

received/overheard by all its neighbors (Figure 2). To account

for varying link conditions counters pi and pi,j are computed

over a sliding window.

The accuracy of probability estimates depends on successful

reception of packets in that node i needs to wait for packets

from node j to compute its own estimate. If packets from

node i to node j fail to be implicitly acknowledged, namely,

after node i has awaited for τ time units to overhear their

retransmissions, node i “degrades” Pi,j to pi

(pi+1)Pi,j . Eventu-

ally, if node i does not receive any transmissions from node j
for a given time interval, it removes node j from the list of

its neighbors, until node j is heard again.

The packet format of CARMA is shown in Figure 2.

i Vi packet ID

Relays Relay1 Relay2 . . . Relaym
ni j1 Pj1,i . . . jni

Pjni
,i

Data

Figure 2: The CARMA packet format.

The first row contains information related to the sender

node: i is the node unique identifier; Vi is the node current

value function, expressing the current minimum cost incurred

by node i to forward a data packet to the sink, and packet ID

is the packet identifier (a positive number initially set to 1;

this field can be used to infer the total number pi of packets

sent by the node.) The second row contains information about

those neighbors of node i that have been selected as relays

for the kth transmission attempt of the packet, k < K.

Particularly, # Relays is the number m of the selected relays,

and Relay1, Relay2, . . . , Relaym are their unique identifiers.

The third row contains information concerning the quality of

incoming links as estimated by their senders, namely, all the

neighbors of node i. Particularly, ni is the number of the

neighbors of node i, j1, . . . , jni
are their unique identifiers,

and Pj1,i, . . . , Pjni
,i indicate the quality of links incoming to

node i. The last row is the packet payload, namely, the data.

The maximum number K of transmission attempts. The

maximum number of transmissions of each packet affects

network traffic, and therefore network performance. As a

consequence, the value of the maximum number K of trans-

mission attempts of a packet p by a node i should be set

dynamically, according to the current traffic. To determine

the value of K, we approximate the network throughout

S of CARMA using the well-known ALOHA closed-form

expression S = Ge−2G, where G indicates the average

number of transmission attempts in a time interval equal to

the time needed to transmit one packet. If we define tp as the

collision window, i.e., the time needed to transmit a packet plus

the propagation time, and λ as the aggregate (network-wide)

packet arrival rate, G can be approximated as G = tpλK.

Since the maximum throughput of an ALOHA network is

achieved when G = 0.5, we can compute the maximum

number K of retransmissions as follows: K = ⌈0.5/(tpλ)⌉.

For example, if tp = 2.3s and λ = 0.1 pkt/s, we obtain a

maximum of K = 3 retransmissions. This value grows up

to 22 if λ decreases to 0.01 pkt/s. We observe that K can

assume arbitrarily large or small values, as it depends on

highly varying network parameters. Therefore, we restrict the

range of feasible values between the two thresholds Kmin

and Kmax. This allows a node to avoid an unnecessary large

number of retransmissions while ensuring that a minimum

number of transmission attempts is guaranteed. We have

determined Kmin and Kmax through a wide set of field trials

(Section IV-D), and we have set them to 3 and 8, respectively.

IV. PERFORMANCE EVALUATION

We demonstrate the effectiveness of our reinforcement

learning-based approach to multi-path underwater routing

through a comparative performance evaluation of CARMA

and three state-of-art solutions for underwater routing, namely,

CARP [6], QELAR [7] and EFlood [6].

A. Benchmark protocols

CARMA is compared to three previously proposed un-

derwater routing techniques each presenting a different and

paradigmatic approach to underwater routing. CARP repre-

sents the category of cross layer protocols designed to be aware

of the current quality of the underwater channel; QELAR

shows how to route smartly by using a machine learning tech-

nique to optimize energy consumption, and EFlood represents

a multi-path approach to underwater routing. In the following,

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

7

we briefly describe these three solutions, highlighting those

features that make them some of the best performing solutions

currently available.

CARP is a cross layer single-path routing solution de-

signed to be reliable, channel aware and energy efficient [6].

CARP is characterized by a channel reservation phase via

the exchange of control packets, named PING and PONG,

which also determine relay selection, namely, perform routing

operations. CARP takes advantage of its channel reservation

mechanism to transmit trains of consecutive packets, which

are transmitted back to back and acknowledged cumulatively.

This maximizes channel utilization, reduces control packet

overhead and improves overall network performance.

QELAR is a single-path routing protocol for underwater

networks based on a model-based Q-learning approach aimed

at maximizing residual energy at the network nodes [7]. Its

learning cost function takes into account the residual energy

of each node as well as the energy distribution among neigh-

boring nodes. Relays are chosen depending on the energy they

can save. It uses the well-known CSMA protocol at the MAC

layer. The maximum number R of retransmissions of a packet

is statically set to a pre-defined value.

EFlood is a multi-path approach to routing obtained by en-

hancing common flooding using a simple de-synchronization

scheme to randomize transmission attempts [6]. This reduces

collisions and increases robustness. It uses the CSMA for

channel access. In field deployment has shown that EFlood

achieves high reliability and low latency, incurring much less

collisions than plain flooding.

B. Investigated metrics

Protocol performance is assessed through the investigation of

the following metrics.

• Packet delivery ratio (PDR), defined as the ratio between

the number of packets correctly received by the sink and the

number of packets generated by all nodes.

• End-to-end latency, defined as the time it takes by a packet

to be delivered to the sink, namely, from when it is generated

at a node to when it is received at the sink for the first time.

• Energy per bit, defined as the energy consumed by the

network to correctly deliver a bit of data to the sink.

C. SUNSET-based simulations

All routing protocols have been implemented in SUNSET

SDCS [8], a framework specifically designed for underwater

network simulations. SUNSET has been connected to the

Bellhop ray tracing tool [24] via the WOSS interface [25]

to accurately model the underwater acoustic channel. Bellhop

is used to compute acoustic path loss at a given location,

as well as the spatially-varying interference induced by node

transmissions given as input a specific sea profile. In the

experiments, the environmental data input to Bellhop refers

to an area located in the Norwegian fjord off the coast of

Trondheim, with the coordinate (0, 0, 0) of the surface located

at 63◦, 29′, 1.0752′′N and 10◦, 32′, 46.6728′′E. Sound speed

profiles, bathymetry profiles and information on the type of

bottom sediments of the selected area are obtained from the

World Ocean Database [26], from the General Bathymetric

Chart of the Oceans (GEBCO) [27], and from the National

Geophysical Data Center’s Deck41 data base [28].

Simulation scenarios and settings: We consider UWSNs

with 6, 20 and 40 nodes, which are representative of current,

larger, and desirable deployments, respectively. Nodes are

statically positioned at different depths, ranging from 10m to

240m, in rectangular regions with surface of 1km2, 2km2 and

4km2, respectively. The sink is placed at the left corner of the

deployment area, 10m under the surface.

Network traffic is generated according to a Poisson pro-

cess with aggregate rate λ packets per second, with λ ∈
{0.01, 0.04, 0.1}, corresponding to low, medium and high

traffic, respectively. Once a packet is generated, it is assigned

to a source node randomly selected among all nodes but the

sink.6 The destination of all packets is the sink.

The data packet size is set to 1000 bytes. The total size

of a data packet is given by the size of the payload plus

that of the headers added by the different layers, computed

as follows. The physical header overhead changes according

to the data rate. It is dominated by a 10ms synchronization

preamble. At the MAC layer, the header size depends on the

protocols. EFlood and QELAR use a CSMA-based MAC pro-

tocol without acknowledgments. The CSMA header contains

the sender and the destination addresses, and the packet type

for a total length of 3B. QELAR requires 6 additional bytes for

the routing header that carries information on the node state

space and residual energy. CARP is a cross layer protocol

with its own MAC protocol also performing routing duties.

The size of its PING and PONG control packets is 10B and

6B, respectively. Acknowledgments and “HELLO” packets

(for node discovery) are 6B long. The size of the CARP

MAC header is 4B. CARMA carries a host of information

in the packet header, including the node value function, list of

selected relays, and Pi,j estimates for all neighbors (Figure 2).

As a consequence, the size of the header depends on the

number of a node neighbors, i.e., it is variable. As the protocol

tends to favor smaller set (at least at first), keeping the

size of the header variable allows to have smaller headers.

The maximum size of headers in our experiments was 30B,

which occurred in networks with 40 nodes. Channel access

is performed according to a CSMA scheme. Whether CSMA-

based or cross layer, all channel access methods considered

here implement backoff mechanisms to reduce collisions.

Particularly, CARMA estimates its backoff time depending on

the current forwarding set and transmission retries.

In our simulations, we assume BPSK modulation (consistent

with the type of Evologics modem we used in experiments at

sea [29]). The carrier frequency is 25.6kHz for a bandwidth

of 4000Hz. Bandwidth efficiency is set to 1bps/Hz, resulting

in a data rate Rb of 4000b/s. For the selected value of the

bandwidth and of the carrier frequency the transmission power

is set to 2.8W, resulting in an average BER of 10−6 on the

routes. The reception power consumption is set to 0.5W. The

6 This corresponds to each node i generating packets according to an

independent Poisson process with rate λi = λ
N−1

where N is the number

of nodes in the network.

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

8

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

6 20 40

P
D

R

Number of nodes

CARMA
CARP

QELAR
EFlood

 0.98

 0.99

 1

20 40

(a) Low traffic: λ = 0.01

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

6 20 40

P
D

R

Number of nodes

CARMA
QELAR

CARP
EFlood

(b) Medium traffic: λ = 0.04

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

6 20 40

P
D

R

Number of nodes

CARMA
CARP

QELAR
EFlood

(c) High traffic: λ = 0.1

Figure 3: Packet delivery ratio.

estimation of the reception and transmission powers is based

on the energy consumption of existing acoustic modems [29].

The maximum size of a train of packets transmitted by

CARP is set to 8. In other words, once reserved the channel

through a PING/PONG handshake, a node can send up to 8
packets back to back. The maximum number R of packet

retransmissions in QELAR is set to 5. Based on our investi-

gation, this value maximizes the performance of the protocol.

The maximum number K of retransmissions in CARMA is

dynamically adjusted by each node according to traffic and

packet transmission time. The values for Kmin and Kmax

have been determined through a wide set of field trials. They

are set to 3 and 8, respectively.

Finally, the discount factor γ used by CARMA was set to 1
in all our experiments (including those on the testbed at sea—

Section IV-D). This is because we want to minimize the overall

end-to-end cost of delivering a packet to the sink, and there

is no reason to discount future retransmission costs.

Simulation results: The performance of the four protocols

is summarized in Figure 3 (packet delivery ratio), Figure 4

(end-to-end latency), and Figure 5 (energy per bit).

Packet delivery ratio. Figure 3 shows the PDR for different

network sizes and traffic rates. As a general trend across

all protocol, the PDR decreases with increasing traffic and

network size because of the higher number of interference

and the higher probability to find the channel busy.

CARMA shows the best performance in all scenarios,

showing a PDR of 100% at low and medium traffic, which

decreases to 88% only in scenarios with high traffic. The

advantage over the other protocols increases with traffic,

indicating higher scalability. At high traffic, CARMA delivers

an average of 20% more packets than CARP and doubles the

PDR of QELAR and EFlood. The causes of this are multifold.

First and foremost, the CARMA cost function accounts for

the end-to-end transmission cost, which is an energy cost

plus a penalty for failing to deliver a packet to the sink

(Equations 4, 5, and 6). This allows CARMA to find the

paths with the highest probability to success delivery. Sec-

ondly, multi-path transmissions increase protocol robustness.

We observe that CARMA resorts to multi-path transmissions

judiciously, using multiple relays exclusively as the number of

retransmissions increases. This benefits the PDR without being

detrimental to network traffic and energy consumption. Lack

of judicious resorting to multi-path does not allow the other

multi-path solution, EFlood, to obtain acceptable PDR. Finally,

in CARMA the maximum number K of retransmissions is

dynamically set depending on traffic as perceived by each

node (Section III-E). This keeps the network traffic below a

level that would cause excessive interference and noticeable

performance degradation.

CARP delivers 100% of generated packets at low traffic.

Its performance decreases to 65% at the highest traffic. In

CARP, the channel reservation handshake allows the trans-

mitter to determine the best candidate relay in terms of link

quality and residual energy. As such, a relay is chosen that

maximizes the probability of successful one-hop transmission.

Moreover, the use of packet trains reduces network overhead

and optimizes channel utilization. Nevertheless, at high traffic,

CARP delivers only 70% of the packets delivered by CARMA.

This is because when the traffic increases, the number of

nodes involved in channel contention increases as well, thus

hindering the access to the channel.

In QELAR, the learning algorithm cost function is based on

the relay node residual energy. This favors energy consumption

over packet delivery ratio as packets are dropped whenever

discarding them will cost less energy than that needed to

deliver them to the sink. Furthermore, at high traffic the use of

a fixed number R of retransmissions leads to excessive offered

load. This increases the number of collisions, negatively

impacting successful packet reception and hence the PDR.

When congestion builds up, the mechanism used by QELAR

to estimate the transmission probability looses accuracy. This

impairs the learning mechanism and leads to the selection of

suboptimal relay nodes.

Finally, it is no surprise that EFlood, which is based

on a flooding-based multi-path scheme, exhibits the worst

performance, achieving a PDR below 40% in the large network

scenario with high traffic. As mentioned, this is because of the

indiscriminate use of multi-path routing when instead a smaller

number of relays—as dynamically chosen by CARMA—

would be beneficial.

End-to-end latency. Figure 4 shows the average end-to-end

latency for packets successfully delivered to the sink. As a

general trend, latency increases with traffic and network size,

for increased number of collisions and retransmissions.

Results show that CARMA achieves the lowest latency.

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

9

 0

 5

 10

 15

 20

 25

 30

6 20 40

L
at

en
cy

 [
se

c]

Number of nodes

EFlood
CARP

QELAR
CARMA

(a) Low traffic: λ = 0.01

 20

 40

 60

 80

 100

 120

6 20 40

L
at

en
cy

 [
se

c]

Number of nodes

CARP
EFlood

QELAR
CARMA

(b) Medium traffic: λ = 0.04

 0

 50

 100

 150

 200

 250

 300

6 20 40

L
at

en
cy

 [
se

c]

Number of nodes

CARP
QELAR
EFlood

CARMA

(c) High traffic: λ = 0.1

Figure 4: End-to-end latency.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

6 20 40

E
n
er

g
y
/b

it
 [

J/
b
]

Number of nodes

EFlood
QELAR

CARMA
CARP

(a) Low traffic: λ = 0.01

 0

 0.02

 0.04

 0.06

 0.08

 0.1

6 20 40

E
n
er

g
y
/b

it
 [

J/
b
]

Number of nodes

EFlood
QELAR

CARMA
CARP

(b) Medium traffic: λ = 0.04

 0

 0.02

 0.04

 0.06

 0.08

 0.1

6 20 40

E
n
er

g
y
/b

it
 [

J/
b
]

Number of nodes

EFlood
QELAR

CARMA
CARP

(c) High traffic: λ = 0.1

Figure 5: Energy per bit.

This is yet another beneficial consequence of the definition

of the CARMA cost function that, by explicitly seeking to

minimize route-long energy consumption, succeeds in also

minimizing the average route length traveled by packets, which

corresponds to lower travel time.

Not surprisingly, because of its channel reservation mech-

anism, CARP experiences high end-to-end latency. This

severely limits CARP scalability. As shown in Figure 4 (c), in

the 40 nodes topology, at high traffic, packets sent by CARP

incur a tenfold latency increase over that incurred by packets

sent by CARMA, and latency that is five times higher than

that of the other two protocols. The performance of QELAR

is closer to that of CARMA, for basically the same reason:

Minimizing energy consumption leads to shorter routes and

hence to lower latency. The fact that QELAR obtains higher

latency than CARMA is mainly due to the pre-set number R
of retransmissions.

EFlood latency increases with network size because of the

longer routes. However, latency does not vary noticeably with

increasing traffic. This can be explained by observing that

since each packet is transmitted only once by a node, the

latency component due to retransmissions is avoided here.

Energy per bit. Figure 5 shows the energy consumed to de-

liver a bit of data to the sink. As expected, energy consumption

increases with traffic and network size. CARMA, CARP and

QELAR obtain very similar performance at low traffic.

CARMA reaps the benefit of its cost function being de-

signed explicitly to minimize energy consumption, which

obtains low consumption irrespective of traffic and network

size.

CARP saves energy by reducing excessive retransmissions

via effective channel reservation and transmitting multiple

packets back to back.

As the traffic increases, the performance of QELAR de-

grades because of the higher number of packet retransmissions

and the lower number of bits correctly delivered to the sink.

Because of its flooding-based nature, EFlood shows the

worst performance in all scenarios.

We conclude our journey through the performance of the

selected protocols by taking a look at their performance from

a different perspective. Specifically, we provide a spatial view

of the three considered performance metrics at the node level.

Figure 6 and Figure 7 show results for networks with 40 nodes

and high traffic (λ = 0.1 pkt/s). In both figures, the sink is

depicted as a black triangle. In Figure 6 nodes are depicted as

circles whose radius is proportional to the latency of packets

from that node (the smaller the better). The color of the node

indicates its PDR: The darker the color the higher the PDR.

In Figure 7 each node is depicted as a circle whose radius

is proportional to the energy per bit consumed at that node

(again, the smaller the better). These results clearly indicate

that all CARMA nodes perform remarkably well, including

those far away from the sink. With QELAR, node performance

is uneven, with the PDR rapidly degrading as we move farther

away from the sink. As mentioned earlier, this is due to

QELAR pre-set, high number R of retransmissions and to

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

10

0 500 1000 1500 2000 2500 3000 3500 4000

X[m]

0

500

1000

Y
[m

]
CARMA

0

0.2

0.4

0.6

0.8

1

P
D

R

0 500 1000 1500 2000 2500 3000 3500 4000

X[m]

0

500

1000

Y
[m

]

EFlood

0

0.2

0.4

0.6

0.8

1

P
D

R

(a) CARMA and EFlood

0 500 1000 1500 2000 2500 3000 3500 4000

X[m]

0

500

1000

Y
[m

]

QELAR

0

0.2

0.4

0.6

0.8

1

P
D

R

0 500 1000 1500 2000 2500 3000 3500 4000

X[m]

0

500

1000

Y
[m

]

CARP

0

0.2

0.4

0.6

0.8

1

P
D

R

(b) QELAR and CARP

Figure 6: A joint snapshot of PDR and end-to-end latency in networks with 40 nodes and high traffic.

0 500 1000 1500 2000 2500 3000 3500 4000

X[m]

0

200

400

600

800

1000

Y
[m

]

CARMA

0 500 1000 1500 2000 2500 3000 3500 4000

X[m]

0

200

400

600

800

1000

Y
[m

]

EFlood

(a) CARMA and EFlood

0 500 1000 1500 2000 2500 3000 3500 4000

X[m]

0

200

400

600

800

1000

Y
[m

]

QELAR

0 500 1000 1500 2000 2500 3000 3500 4000

X[m]

0

200

400

600

800

1000

Y
[m

]

CARP

(b) QELAR and CARP

Figure 7: A snapshot of the energy consumed per bit in networks with 40 nodes and high traffic.

its cost function, that favors energy consumption over packet

delivery. With CARP, nodes obtain good PDR and energy

consumption performance. However, they suffer from high

end-to-end latency, independently of the distance from the

sink, because of the channel reservation mechanism.

D. Experiments at sea

We tested the performance of CARMA at sea through a

series of experiments off the coast of Calabria, at Vibo Valentia

Marina (South of Italy). The six-node network topology is

depicted in Figure 8. The distances (in meters) between each

pair of nodes are shown in Table I.

Table I: Distances between pairs of nodes (meters).

1 2 3 4 5 6

1 - 110 142 185 312 96
2 110 - 121 95 214 220
3 142 121 - 102 213 230
4 185 95 102 - 129 293
5 312 214 213 129 - 420
6 96 220 230 293 420 -

Figure 8: Network topology used for coastal monitoring.

We deployed six Evologics S2C/18 acoustic modems [29]

in a shallow water environment with a maximum depth of

10 meters to reproduce a coastal monitoring scenario. Five

nodes (with IDs from 1 to 5) were deployed at different

depths ranging from 1 to 3 meters. One modem acted as

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

11

the sink (node 6). It was deployed on the side of a boat

working as control station. All nodes but the sink generate

packets. In this setting, we compared the performance of

CARMA with that of CARP and EFlood. We conducted

two 90-minute experiments two hours apart from each other

(referred below as Experiment 1 and Experiment 2). In each

experiment, the three protocols were tested for a period of

30 minutes each.7 The packet size is set to 64B and the bit

rate to 480bps.8 Given the small size of the network, the

MAC portion of the header of CARMA packets was 9B long.

That of the header of CARP and EFlood was 5B and 3B

long, respectively. (The part of the header concerning the

physical layer has the same size for all protocols.) Traffic

was generated according to a constant bit rate process at an

aggregate rate of λ = 0.05 packets per second (3 packets

per minute) and λ = 0.066 packets per second (4 packets

per minute) in Experiment 1 and 2, respectively. It is worth

observing that, due to the time consuming handshake phase,

λ = 0.066 is the highest load that CARP was able to sustain

in the considered scenario. We set the Evologics modem to

operate at the lowest power level possible, resulting in a power

consumption for transmissions of 2.8W. Power consumption

for reception was 0.5W. Since the acoustic modems we used

do not feature power control with the fine granularity required

by CARP, the same transmission power level for control and

data packets was used for each experiment.

Table II shows the link Packet Error Rate (PER) measured

during the two experiments.

We observe that link quality was in general rather poor.

It varies significantly between the two experiments. Links

were also highly asymmetric. Aside very few exceptions, link

quality during Experiment 2 was worse than that of links in

Experiment 1. Particularly, the PER of the link from node 3 to

node 5 decreased from 87% to 30%. It is interesting to observe

that node 5, which is the farthest node from the sink, had

the second best direct transmission performance to the sink

itself (PER=19%) during Experiment 1, but completely lost

connectivity to the sink during Experiment 2 (PER=100%).

Table III summarizes the performance of the three protocols.

Given the relatively small size of packets transmitted by the

Evologics modems (64B), besides investigating PDR, end-to-

end latency, and energy per bit, we also show results on data

throughput (data bits/second), to measure the effect of the

(MAC component of the) packet header size on the amount

of information delivered to the sink per time unit.

CARMA significantly outperforms both CARP and EFlood

in terms of PDR with 40% and 100% more packets delivered

to the sink, respectively. Performance is better in the first

experiment with 98% of delivered packets vs. the 89% of

the second. Here multi-path routing at higher number of

retransmissions increases the robustness of CARMA, allowing

nodes to deliver significantly more packets. As expected in this

scenario EFlood showed the worst PDR performance, because

7 Test duration was selected as a trade-off between the need of testing the
protocols under the same underwater channel conditions and have each test
last enough to collect statistically meaningful results.

8 These packet size and bit rate are the maximum available on Evologics
modems used in the “Instant Messages” mode.

of the high link PER and the highest energy demand. In these

experiments, CARP suffers from the high PER that impairs

channel reservation and, therefore, actual packet transmission.

This offsets the benefit of the use of packets trains and, as

a result, CARP has lower PDR than CARMA, and incurs

extremely high latency. CARMA exhibits the lowest energy

consumption per bit despite the multi-path communication

and longer headers. This can be explained by observing that

the use of multi-path routing is connected to the number of

retransmissions to increase robustness without affecting energy

consumption sensibly. The same considerations justify data

throughput results: Despite the larger header, CARMA delivers

data bits at a rate that is higher than that of the other two

protocols. In general, the data throughput of all protocols

measured during Experiment 2 is higher than that measured in

Experiment 1. This is because of the higher traffic used in the

second experiment. Although in this case we observe a higher

number of collisions, and therefore a higher number of lost

packets (lower PDR), the overall number of bits delivered to

the sink per second is higher, whence the higher throughput.

Figure 9 and Figure 10 depict the routes selected by

CARMA and CARP in Experiment 1 and Experiment 2,

respectively.

Figure 9a and Figure 10a depict the CARMA forwarding

set through solid and dashed line: Solid lines indicate the

most used paths to the sink; the dashed ones concern the

extra relays chosen to support multi-path packet forwarding.

In both sets of experiments we clearly observe that CARMA

resorts to multi-path routing to deliver data packets to the

sink. Figure 9b shows that, when using CARP, packets from

node 5 reach the sink via two different paths, namely, directly

or via node 1. These are unicast paths: There are times where

the direct link between node 5 and the sink is good enough

to allow successful transmission, and times when this does

not happen. In this case CARP resorts to forward the packets

through node 1. CARMA, instead, forwards packets on both

paths at the same time, increasing robustness and PDR.

As a final note we observe that results from simulations on

networks with 6 nodes (Figure 3, Figure 4 and Figure 5) and

those from the six-node testbed (Table III) are in reasonable

agreement, in that CARMA always shows performance that

is superior to that of both CARP and EFlood. Simulated

results are better than those from the testbed mainly because

our simulator, while implementing typical impairments of the

underwater channel (like multi-path and fading), does not fully

capture the time varying nature of underwater links.

E. Convergence analysis

In this section we set to investigate the impact of channel

variations on learning how to route, i.e., we provide a measure

of how fast CARMA is able to converge to optimal relay

selection. To this aim, we study the variations of the value

function of a node as a function of the number of transmitted

packets. We focus on node 2, which, in all our experiments,

is the only node that was never able to communicate directly

with the sink (farthest node from the sink in terms of number

of hops). For the sake of simplicity we assume unitary energy

cost and a relative large drop penalty, L = 100 (Equation (7)).

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

12

Table II: Link quality. Entry (i, j) contains the Packet Error Rate (PER) of the link from i to j.

(a) Experiment 1

1 2 3 4 5 6

1 - 22% 66% 88% 54% 0%

2 22% - 75% 25% 69% 100%

3 48% 82% - 61% 87% 88%

4 73% 42% 82% - 84% 56%

5 23% 55% 60% 60% - 19%

6 0% 63% 74% 46% 37% -

(b) Experiment 2

1 2 3 4 5 6

1 - 37% 55% 97% 47% 20%

2 47% - 94% 70% 62% 100%

3 45% 94% - 59% 30% 92%

4 83% 58% 72% - 80% 88%

5 52% 79% 46% 60% - 100%

6 10% 75% 93% 50% 91% -

Table III: Results from experiments at sea.

(a) Experiment 1: Aggregate rate of 0.05 packets per second

Metric CARMA CARP EFlood

Packet Delivery Ratio [%] 98 72 48

End-to-end latency [s] 5.92 89.27 7.79

Energy per bit [J/b] 0.033 0.044 0.060

Data throughput [b/s] 22.8 17.8 12.2

(b) Experiment 2: Aggregate rate of 0.066 packets per second

Metric CARMA CARP EFlood

Packet Delivery Ratio [%] 89 63 44

End-to-end latency [s] 11.8 81 7.07

Energy per bit [J/b] 0.043 0.047 0.053

Data throughput [b/s] 30.5 23 16

(a) CARMA (b) CARP

Figure 9: Experiment 1: Route selection.

We observe that trends vary significantly from Experiment 1

to Experiment 2. During Experiment 1 the learning algorithm

(Algorithm 3) executed by node 2 converged to a solution after

less than 20 packets were transmitted. Starting without any

knowledge of the surrounding environment, node 2 was able

to quickly learn the best forwarding strategy. After converging,

the value function V2(0) remains stable, a further indication

that for the duration of the experiment the channel quality was

continuously good. This is consistent with our measurements

of the PER on the links between node 2 and its chosen relay

(node 1), and between node 1 and the sink (entries (2, 1) and

(1, 6) of Table IIa). During Experiment 2, instead, CARMA

struggles to converge to a stable value. This reflects a greater

channel variability, as confirmed by the values in Table IIb.

However, despite the worsened channel conditions, CARMA

obtains a PDR that is just shy of 90%, showing fast adaptation

and robust packet delivery via multi-path routing (Table III).

V. CONCLUSIONS

In this paper we have presented CARMA, a Channel-aware

Reinforcement learning based Multi-path Adaptive routing

protocol for UWSNs. CARMA jointly determines the cardi-

nality and composition of the set of packet relays to maxi-

mize packet delivery ratio and minimize energy consumption.

Energy savings and robustness stem from a reinforcement

learning framework that drives protocol operations by letting

each node to react to the ever changing underwater channel

conditions. Particularly, a node adaptively switches from swift

and energy efficient single-path routing in favorable network

conditions to a more robust multi-path routing when single-

relay forwarding becomes problematic.

We evaluated the performance of CARMA by means of

simulations in networks with increasing size and traffic, and

also with actual experiments at sea. The performance of the

protocol is compared to that of three among the most efficient

solutions available in the literature, namely CARP, QELAR

and EFlood. Results show that CARMA achieves remarkable

performance improvements in terms of end-to-end latency and

energy consumption, and achieves a PDR that is up to 40%

higher than that of all other protocols.

ACKNOWLEDGMENTS

The work was supported by the following projects: EC

EASME ArcheoSub project “Autonomous underwater Robotic

and sensing systems for Cultural Heritage discovery Conserva-

tion and in situ valorization,” Sapienza’s “IoT4Offshore” and

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

13

(a) CARMA (b) CARP

Figure 10: Experiment 2: Route selection.

MIUR “Dipartimenti di eccellenza 2018–2022” of the Depart-

ment of Computer Science of Sapienza University. Stefano

Basagni was supported in part by grant NSF CNS 1726512

(“MRI: SEANet: Development of a Software-Defined Net-

working Testbed for the Internet of Underwater Things”).

REFERENCES

[1] J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor net-
works: Applications, advances and challenges,” Philosophical Transac-

tions of the Royal Society A, vol. 370, pp. 158–175, August 2 2012.
[2] E. Demirors, J. Shi, A. Duong, N. Dave, R. Guida, B. Herrera, F. Pop,

G. Chen, C. Cassella, S. Tadayon, M. Rinaldi, S. Basagni, M. Stojanovic,
and T. Melodia, “The SEANet project: Toward a programmable Internet
of Underwater Things,” in Proceedings of IEEE UComms 2018, Lerici,
Italy, August 28–30 2018, pp. 1–5.

[3] T. Melodia, H. Kulhandjian, L.-C. Kuo, and E. Demirors, “Advances in
underwater acoustic networking,” in Mobile Ad Hoc Networking: Cutting

Edge Directions, S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic,
Eds. Hoboken, NJ: John Wiley & Sons, Inc., March 5 2013, ch. 23,
pp. 804–852.

[4] B. Tomasi, G. Toso, P. Casari, and M. Zorzi, “Impact of time-varying
underwater acoustic channels on the performance of routing protocols,”
IEEE Journal of Oceanic Engineering, vol. 38, no. 4, pp. 772–784,
September 2013.

[5] P. Casari, D. Spaccini, G. Toso, B. Tomasi, R. Petroccia, C. Petrioli, and
M. Zorzi, “A study on channel dynamics representation and its effects
on the performance of routing in underwater networks,” in Proceedings

of the IEEE Asilomar Conference on Signals, Systems and Computers

2012, Pacific Grove, CA, USA, November 4–7 2012, pp. 1536–1540.
[6] S. Basagni, C. Petrioli, R. Petroccia, and D. Spaccini, “CARP: A

channel-aware routing protocol for underwater acoustic wireless net-
works,” Elsevier Ad Hoc Networks and Physical Communication, joint

Special Issue on Advances in Underwater Communications and Net-

works, vol. 34, pp. 92–104, November 27 2015.
[7] T. Hu and Y. Fei, “QELAR: A machine-learning-based adaptive routing

protocol for energy-efficient and lifetime-extended underwater sensor
networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 6, pp.
796–809, June 2010.

[8] C. Petrioli, R. Petroccia, J. R. Potter, and D. Spaccini, “The SUNSET
framework for simulation, emulation and at-sea testing of underwater
wireless sensor networks,” Elsevier Ad Hoc Networks, vol. 34, no. C,
pp. 224–238, November 2015.

[9] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless
networks: A comprehensive survey,” IEEE Communications Surveys &

Tutorials, vol. 20, no. 4, pp. 2595–2621, 2018.
[10] H. A. Al-Rawi, M. A. Ng, and K.-L. Yau, “Application of reinforcement

learning to routing in distributed wireless networks: A review,” Artificial

Intelligence Review, vol. 43, no. 3, pp. 381–416, March 2015.
[11] M. A. Alsheikh, S. Lin, D. Niyato, and H. P. Tan, “Machine learning

in wireless sensor networks: Algorithms, strategies, and applications,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1996–
2018, 2014.

[12] R. Petroccia and J. Alves, “A hybrid routing protocol for underwater
acoustic networks,” in Proceedings of Med-Hoc-Net 2018, Capri, Italy,
June 20–22 2018, pp. 94–101.

[13] G. Han, L. Liu, N. Bao, J. Jiang, W. Zhang, and J. J. P. C. Rodriguez,
“AREP: An asymmetric link-based reverse routing protocol for under-
water acoustic sensor networks,” Journal of Networks and Computer

Applications, no. 92, pp. 51–58, August 15 2017.

[14] Y. Noh, U. Lee, P. Wang, B. S. C. Choi, and M. Gerla, “VAPR:
Void-aware pressure routing for underwater sensor networks,” IEEE

Transactions on Mobile Computing, vol. 12, no. 5, pp. 895–908, 2013.

[15] N. Li, J.-F. Martinez, J. M. Meneses Chaus, and M. Eckert, “A survey on
underwater acoustic sensor network routing protocols,” Sensors, vol. 16,
no. 3, pp. 1–28, March 22 2016.

[16] A. Khan, I. Ali, A. Ghani, N. Khan, M. Alsaqer, A. Ur Rahman,
and H. Mahmood, “Routing protocols for underwater wireless sensor
networks: Taxonomy, research challenges, routing strategies and future
directions,” Sensors, vol. 18, no. 5, pp. 1–30, May 18 2018.

[17] T. Hu and Y. Fei, “An adaptive routing protocol based on connectivity
prediction for underwater disruption tolerant networks,” in Proceedings

of IEEE Globecom 2013, Atlanta, GA, December 9–13 2013, pp. 65–71.

[18] S. Basagni, V. Di Valerio, P. Gjanci, and C. Petrioli, “MARLIN-Q:
Multi-modal communications for reliable and low-latency underwater
data delivery,” Ad Hoc Networks, no. 82, pp. 134–145, January 2019.

[19] ——, “Harnessing HyDRO: Harvesting-aware Data ROuting for under-
water wireless sensor networks,” in Proceedings of ACM MobiHoc 2018,
Los Angeles, CA, June 25–28 2018, pp. 271–279.

[20] R. Plate and C. Wakayama, “Utilizing kinematics and selective sweep-
ing in reinforcement learning-based routing algorithms for underwater
networks,” Ad Hoc Networks, vol. 34, pp. 105–120, 2015.

[21] T. Hu and Y. Fei, “MURAO: A multi-level routing protocol for acoustic-
optical hybrid underwater wireless sensor networks,” in Proceedings of

IEEE SECON 2012, Seul, Korea, June 18–21 2012, pp. 218–226.

[22] K.-L. A. Yau, P. Komisarczuk, and P. D. Teal, “Reinforcement learning
for context awareness and intelligence in wireless networks: Review,
new features and open issues,” Journal of Network and Computer

Applications, vol. 35, pp. 253–267, 2012.

[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed., ser. Adaptive Computation and Machine Learning. Cambridge,
MA: MIT Press, 2017.

[24] M. Porter et al., “Bellhop code.” [Online]. Available: http://oalib.
hlsresearch.com/Rays/index.html

[25] F. Guerra, P. Casari, and M. Zorzi, “World Ocean Simulation System
(WOSS): A simulation tool for underwater networks with realistic prop-
agation modeling,” in Proceedings of ACM WUWNet 2009, Berkeley,
CA, November 3 2009, pp. 1–8.

[26] “World ocean atlas,” www.nodc.noaa.gov/OC5/WOA05/pr woa05.html.

[27] “General bathymetric chart of the oceans,” www.gebco.net.

[28] “National geophysical data center, seafloor surficial sediment descrip-
tions,” http://www.ngdc.noaa.gov/mgg/geology/deck41.html.

[29] Evologics, “Evologics S2C acoustic modems.” [Online]. Available:
http://www.evologics.de/

0733-8716 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2933968, IEEE Journal
on Selected Areas in Communications

14

Valerio Di Valerio is a Postdoc researcher at the
University of Rome “La Sapienza”. He received the
master degree in Computer Engineering in 2010 and
the Doctorate degree in Computer Science in 2014,
both from the University of Rome “Tor Vergata”. His
research interests concern Service Oriented Archi-
tecture, Cloud computing and Underwater Sensors
Networks, with special emphasis on modeling, per-
formance evaluation and optimization. In the last two
years he has also participated to several experimen-
tal campaigns at sea where innovative underwater

systems have been extensively tested. He worked on the EU-funded projects
TROPIC and SUNRISE and served as a reviewer for several international
journals and conferences.

Francesco Lo Presti is Associate Professor in the
Department of Civil Engineering and Computer Sci-
ence of the University of Roma Tor Vergata. He
received the Doctorate degree in computer science
from the University of Rome Tor Vergata in 1997.
His research interests include measurements, mod-
eling and performance evaluation of computer and
communications networks. He has more than 70
publications in international conferences and jour-
nals. He has served as TPC member of conferences
on networking and performance areas, and as re-

viewer for various international journals.

Chiara Petrioli is professor of Computer Science,
director of the Sensor Networks and Embedded
Systems laboratory (SENSES lab) in the department
of Computer Science of the University of Rome “La
Sapienza.” She also leads the Cyber Physical System
lab of “La Sapienza” center for Cyber Intelligence
and Information Security, and is a founding partner
of “La Sapienza” spinoff WSENSE S.r.l. She has
been member of the academic senate and chair of the
PhD program in Computer Science at La Sapienza.
Professor Petrioli research interests concern the de-

sign and optimization of future wireless, embedded, IoT and cyber physical
systems. Prof. Petrioli is chair of the steering committee of IEEE SECON
and general chair of ACM MobiHoc 2019, was program co-chair of IEEE
INFOCOM 2016 and general chair of ACM SenSys 2013. She has been
member of the steering committee and associate editor of IEEE Transactions
on Mobile Computing, member of the steering committee of ACM SenSys,
associate editor of IEEE Transactions on Vehicular Technology, member of
the executive committee of ACM SIGMOBILE, associate editor of Elsevier
Computer Communications, guest editor of special issues for IEEE Access,
Elsevier Ad Hoc Networks, Elsevier Physical Communications, and has been
program co-chair of leading conferences in the field, such as ACM MobiCom
and IEEE SECON. She is currently an elected member of the ACM Europe
Council. Prof. Petrioli has published over a hundred and fifty papers in
prominent international journals and conferences (over 5900 citations; h-index
42). She has been the PI of over twenty national and international research
projects, serving as coordinator of three EC projects (FP7 projects GENESI
and SUNRISE, EASME ArcheoSub) highlighted as success stories on the
Digital Agenda of Europe and featured by international mass media including
RAI SuperQuark and Presa Diretta, Wired USA, the Guardian, Bild magazine,
and National Geographics. Her research has resulted in international patents
and in award-winning innovative technologies. She is a pioneer of the Internet
of Underwater Things, an area on which she has led the development of
breakthrough technologies listed in the NT100 Top “Social Global Techs
changing our lives 2016.” Prof. Petrioli was a Fulbright scholar and is one of
the Inspiring 50 2018, top women in technology.

Luigi Picari received the master degree in Computer
Science from University of Rome “La Sapienza”
summa cum laude in 2012 and the PhD in Computer
Science from University of Rome “La Sapienza” in
2017. His research interests focus on the design, im-
plementation and in-field evaluation of novel Internet
of Things (IoT) solutions for Underwater Wireless
Sensor Networks (UWSNs). In the last five years he
has participated in dozen at sea experimental cam-
paigns where innovative underwater systems have
been tested and validated. He has collaborated in

several EU-funded research projects such as FP7 CLAM, FP7 SUNRISE and
H2020 EASME ArcheoSub. Luigi Picari is also co-author of two international
patents on adaptive underwater communications.

Daniele Spaccini received the Master Degree in
Computer Science with the highest honors (2009)
and the Ph.D. (2015) from Rome University “La
Sapienza,” Italy, where he is currently a post-
doctoral researcher. His research interests include
underwater communications, networking and un-
derwater vehicles localization, to which he has
contributed with over two dozen papers published
in leading venues. He participated in several EU-
funded projects including the FP7 STREP CLAM
project, the FP7 SUNRISE project and H2020

EASME ArcheoSub. In SUNRISE, he was in charge of coordinating all un-
derwater experimental activities. In ArcheoSub he is in charge of coordinating
the design and development of the software to be used in all the in field exper-
iments. In the last five years he has participated in over twenty experimental
campaigns at sea where innovative underwater systems have been extensively
tested. During these campaigns he collaborated with research and defence
centers, such as CMRE (Centre for Maritime Research and Experimentation)
e SPAWAR (Space and Naval Warfare Systems Command). He is also author
of two international patents on adaptive underwater communications.

Stefano Basagni is with the Institute for the Wire-
less Internet of Things and an associate professor
at the ECE Department at Northeastern University,
in Boston, MA. He holds a Ph.D. in electrical
engineering from the University of Texas at Dallas
(December 2001) and a Ph.D. in computer science
from the University of Milano, Italy (May 1998).
Dr. Basagni’s current interests concern research and
implementation aspects of mobile networks and
wireless communications systems, wireless sensor
networking for IoT (underwater and terrestrial), def-

inition and performance evaluation of network protocols and theoretical and
practical aspects of distributed algorithms. Dr. Basagni has published over
nine dozen of highly cited, refereed technical papers and book chapters. His
h-index is currently 42 (May 2019). He is also co-editor of three books.
Dr. Basagni served as a guest editor of multiple international ACM/IEEE,
Wiley and Elsevier journals. He has been the TPC co-chair of international
conferences. He is a distinguished scientist of the ACM, a senior member of
the IEEE, and a member of CUR (Council for Undergraduate Education).

